3.6.4 \(\int (d+c d x)^{5/2} \sqrt {f-c f x} (a+b \text {ArcSin}(c x)) \, dx\) [504]

Optimal. Leaf size=376 \[ \frac {2 b d^2 x \sqrt {d+c d x} \sqrt {f-c f x}}{3 \sqrt {1-c^2 x^2}}-\frac {3 b c d^2 x^2 \sqrt {d+c d x} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}}-\frac {2 b c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x}}{9 \sqrt {1-c^2 x^2}}-\frac {b c^3 d^2 x^4 \sqrt {d+c d x} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}}+\frac {3}{8} d^2 x \sqrt {d+c d x} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))+\frac {1}{4} c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))-\frac {2 d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (1-c^2 x^2\right ) (a+b \text {ArcSin}(c x))}{3 c}+\frac {5 d^2 \sqrt {d+c d x} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))^2}{16 b c \sqrt {1-c^2 x^2}} \]

[Out]

3/8*d^2*x*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2)*(-c*f*x+f)^(1/2)+1/4*c^2*d^2*x^3*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2)
*(-c*f*x+f)^(1/2)-2/3*d^2*(-c^2*x^2+1)*(a+b*arcsin(c*x))*(c*d*x+d)^(1/2)*(-c*f*x+f)^(1/2)/c+2/3*b*d^2*x*(c*d*x
+d)^(1/2)*(-c*f*x+f)^(1/2)/(-c^2*x^2+1)^(1/2)-3/16*b*c*d^2*x^2*(c*d*x+d)^(1/2)*(-c*f*x+f)^(1/2)/(-c^2*x^2+1)^(
1/2)-2/9*b*c^2*d^2*x^3*(c*d*x+d)^(1/2)*(-c*f*x+f)^(1/2)/(-c^2*x^2+1)^(1/2)-1/16*b*c^3*d^2*x^4*(c*d*x+d)^(1/2)*
(-c*f*x+f)^(1/2)/(-c^2*x^2+1)^(1/2)+5/16*d^2*(a+b*arcsin(c*x))^2*(c*d*x+d)^(1/2)*(-c*f*x+f)^(1/2)/b/c/(-c^2*x^
2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.39, antiderivative size = 376, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 8, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {4763, 4847, 4741, 4737, 30, 4767, 4783, 4795} \begin {gather*} \frac {1}{4} c^2 d^2 x^3 \sqrt {c d x+d} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))+\frac {5 d^2 \sqrt {c d x+d} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))^2}{16 b c \sqrt {1-c^2 x^2}}-\frac {2 d^2 \left (1-c^2 x^2\right ) \sqrt {c d x+d} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))}{3 c}+\frac {3}{8} d^2 x \sqrt {c d x+d} \sqrt {f-c f x} (a+b \text {ArcSin}(c x))-\frac {3 b c d^2 x^2 \sqrt {c d x+d} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}}+\frac {2 b d^2 x \sqrt {c d x+d} \sqrt {f-c f x}}{3 \sqrt {1-c^2 x^2}}-\frac {2 b c^2 d^2 x^3 \sqrt {c d x+d} \sqrt {f-c f x}}{9 \sqrt {1-c^2 x^2}}-\frac {b c^3 d^2 x^4 \sqrt {c d x+d} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + c*d*x)^(5/2)*Sqrt[f - c*f*x]*(a + b*ArcSin[c*x]),x]

[Out]

(2*b*d^2*x*Sqrt[d + c*d*x]*Sqrt[f - c*f*x])/(3*Sqrt[1 - c^2*x^2]) - (3*b*c*d^2*x^2*Sqrt[d + c*d*x]*Sqrt[f - c*
f*x])/(16*Sqrt[1 - c^2*x^2]) - (2*b*c^2*d^2*x^3*Sqrt[d + c*d*x]*Sqrt[f - c*f*x])/(9*Sqrt[1 - c^2*x^2]) - (b*c^
3*d^2*x^4*Sqrt[d + c*d*x]*Sqrt[f - c*f*x])/(16*Sqrt[1 - c^2*x^2]) + (3*d^2*x*Sqrt[d + c*d*x]*Sqrt[f - c*f*x]*(
a + b*ArcSin[c*x]))/8 + (c^2*d^2*x^3*Sqrt[d + c*d*x]*Sqrt[f - c*f*x]*(a + b*ArcSin[c*x]))/4 - (2*d^2*Sqrt[d +
c*d*x]*Sqrt[f - c*f*x]*(1 - c^2*x^2)*(a + b*ArcSin[c*x]))/(3*c) + (5*d^2*Sqrt[d + c*d*x]*Sqrt[f - c*f*x]*(a +
b*ArcSin[c*x])^2)/(16*b*c*Sqrt[1 - c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4741

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcSin[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(a + b*ArcSin[c*x])^n/S
qrt[1 - c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[x*(a + b*ArcSin[c*x])^(
n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rule 4763

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> D
ist[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^2)^q), Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q]
 && GeQ[p - q, 0]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4783

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Dist[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]], Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Dist[b*c*(n/(f*(m + 2)))*Si
mp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b,
c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rule 4847

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))

Rubi steps

\begin {align*} \int (d+c d x)^{5/2} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {\left (\sqrt {d+c d x} \sqrt {f-c f x}\right ) \int (d+c d x)^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\left (\sqrt {d+c d x} \sqrt {f-c f x}\right ) \int \left (d^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )+2 c d^2 x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )+c^2 d^2 x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\left (d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}+\frac {\left (2 c d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int x \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}+\frac {\left (c^2 d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int x^2 \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {1}{2} d^2 x \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{4} c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )-\frac {2 d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{3 c}+\frac {\left (d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {1-c^2 x^2}}+\frac {\left (2 b d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int \left (1-c^2 x^2\right ) \, dx}{3 \sqrt {1-c^2 x^2}}-\frac {\left (b c d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int x \, dx}{2 \sqrt {1-c^2 x^2}}+\frac {\left (c^2 d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {1-c^2 x^2}} \, dx}{4 \sqrt {1-c^2 x^2}}-\frac {\left (b c^3 d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int x^3 \, dx}{4 \sqrt {1-c^2 x^2}}\\ &=\frac {2 b d^2 x \sqrt {d+c d x} \sqrt {f-c f x}}{3 \sqrt {1-c^2 x^2}}-\frac {b c d^2 x^2 \sqrt {d+c d x} \sqrt {f-c f x}}{4 \sqrt {1-c^2 x^2}}-\frac {2 b c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x}}{9 \sqrt {1-c^2 x^2}}-\frac {b c^3 d^2 x^4 \sqrt {d+c d x} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}}+\frac {3}{8} d^2 x \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{4} c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )-\frac {2 d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{3 c}+\frac {d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )^2}{4 b c \sqrt {1-c^2 x^2}}+\frac {\left (d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{8 \sqrt {1-c^2 x^2}}+\frac {\left (b c d^2 \sqrt {d+c d x} \sqrt {f-c f x}\right ) \int x \, dx}{8 \sqrt {1-c^2 x^2}}\\ &=\frac {2 b d^2 x \sqrt {d+c d x} \sqrt {f-c f x}}{3 \sqrt {1-c^2 x^2}}-\frac {3 b c d^2 x^2 \sqrt {d+c d x} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}}-\frac {2 b c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x}}{9 \sqrt {1-c^2 x^2}}-\frac {b c^3 d^2 x^4 \sqrt {d+c d x} \sqrt {f-c f x}}{16 \sqrt {1-c^2 x^2}}+\frac {3}{8} d^2 x \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )+\frac {1}{4} c^2 d^2 x^3 \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )-\frac {2 d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (1-c^2 x^2\right ) \left (a+b \sin ^{-1}(c x)\right )}{3 c}+\frac {5 d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (a+b \sin ^{-1}(c x)\right )^2}{16 b c \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.85, size = 293, normalized size = 0.78 \begin {gather*} \frac {360 b d^2 \sqrt {d+c d x} \sqrt {f-c f x} \text {ArcSin}(c x)^2-720 a d^{5/2} \sqrt {f} \sqrt {1-c^2 x^2} \text {ArcTan}\left (\frac {c x \sqrt {d+c d x} \sqrt {f-c f x}}{\sqrt {d} \sqrt {f} \left (-1+c^2 x^2\right )}\right )+d^2 \sqrt {d+c d x} \sqrt {f-c f x} \left (-256 b c x \left (-3+c^2 x^2\right )+48 a \sqrt {1-c^2 x^2} \left (-16+9 c x+16 c^2 x^2+6 c^3 x^3\right )+144 b \cos (2 \text {ArcSin}(c x))-9 b \cos (4 \text {ArcSin}(c x))\right )+12 b d^2 \sqrt {d+c d x} \sqrt {f-c f x} \text {ArcSin}(c x) \left (-64 \left (1-c^2 x^2\right )^{3/2}+24 \sin (2 \text {ArcSin}(c x))-3 \sin (4 \text {ArcSin}(c x))\right )}{1152 c \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + c*d*x)^(5/2)*Sqrt[f - c*f*x]*(a + b*ArcSin[c*x]),x]

[Out]

(360*b*d^2*Sqrt[d + c*d*x]*Sqrt[f - c*f*x]*ArcSin[c*x]^2 - 720*a*d^(5/2)*Sqrt[f]*Sqrt[1 - c^2*x^2]*ArcTan[(c*x
*Sqrt[d + c*d*x]*Sqrt[f - c*f*x])/(Sqrt[d]*Sqrt[f]*(-1 + c^2*x^2))] + d^2*Sqrt[d + c*d*x]*Sqrt[f - c*f*x]*(-25
6*b*c*x*(-3 + c^2*x^2) + 48*a*Sqrt[1 - c^2*x^2]*(-16 + 9*c*x + 16*c^2*x^2 + 6*c^3*x^3) + 144*b*Cos[2*ArcSin[c*
x]] - 9*b*Cos[4*ArcSin[c*x]]) + 12*b*d^2*Sqrt[d + c*d*x]*Sqrt[f - c*f*x]*ArcSin[c*x]*(-64*(1 - c^2*x^2)^(3/2)
+ 24*Sin[2*ArcSin[c*x]] - 3*Sin[4*ArcSin[c*x]]))/(1152*c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.13, size = 0, normalized size = 0.00 \[\int \left (c d x +d \right )^{\frac {5}{2}} \left (a +b \arcsin \left (c x \right )\right ) \sqrt {-c f x +f}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)^(5/2)*(a+b*arcsin(c*x))*(-c*f*x+f)^(1/2),x)

[Out]

int((c*d*x+d)^(5/2)*(a+b*arcsin(c*x))*(-c*f*x+f)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(5/2)*(a+b*arcsin(c*x))*(-c*f*x+f)^(1/2),x, algorithm="maxima")

[Out]

b*sqrt(d)*sqrt(f)*integrate((c^2*d^2*x^2 + 2*c*d^2*x + d^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2(c*x, sqrt(c*x
 + 1)*sqrt(-c*x + 1)), x) + 1/24*(15*sqrt(-c^2*d*f*x^2 + d*f)*d^2*x + 15*d^3*f*arcsin(c*x)/(sqrt(d*f)*c) - 6*(
-c^2*d*f*x^2 + d*f)^(3/2)*d*x/f - 16*(-c^2*d*f*x^2 + d*f)^(3/2)*d/(c*f))*a

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(5/2)*(a+b*arcsin(c*x))*(-c*f*x+f)^(1/2),x, algorithm="fricas")

[Out]

integral((a*c^2*d^2*x^2 + 2*a*c*d^2*x + a*d^2 + (b*c^2*d^2*x^2 + 2*b*c*d^2*x + b*d^2)*arcsin(c*x))*sqrt(c*d*x
+ d)*sqrt(-c*f*x + f), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)**(5/2)*(a+b*asin(c*x))*(-c*f*x+f)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6188 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^(5/2)*(a+b*arcsin(c*x))*(-c*f*x+f)^(1/2),x, algorithm="giac")

[Out]

integrate((c*d*x + d)^(5/2)*sqrt(-c*f*x + f)*(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d+c\,d\,x\right )}^{5/2}\,\sqrt {f-c\,f\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))*(d + c*d*x)^(5/2)*(f - c*f*x)^(1/2),x)

[Out]

int((a + b*asin(c*x))*(d + c*d*x)^(5/2)*(f - c*f*x)^(1/2), x)

________________________________________________________________________________________